Copied to
clipboard

G = C23.741C24order 128 = 27

458th central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial, rational

Aliases: C23.741C24, C24.466C23, C22.3942- 1+4, C22.5142+ 1+4, (C22×C4)⋊16Q8, C23.72(C2×Q8), C23⋊Q8.35C2, (C23×C4).503C22, (C22×C4).252C23, C2.25(C232Q8), C23.Q8.47C2, C23.7Q8.77C2, C23.4Q8.35C2, C22.173(C22×Q8), C23.34D4.36C2, (C22×Q8).244C22, C23.78C2371C2, C23.83C23143C2, C23.81C23144C2, C2.57(C22.54C24), C2.C42.443C22, C2.63(C22.56C24), C2.49(C23.41C23), C2.74(C22.57C24), (C2×C4).137(C2×Q8), (C2×C4⋊C4).549C22, (C2×C22⋊C4).357C22, SmallGroup(128,1573)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.741C24
C1C2C22C23C24C2×C22⋊C4C23⋊Q8 — C23.741C24
C1C23 — C23.741C24
C1C23 — C23.741C24
C1C23 — C23.741C24

Generators and relations for C23.741C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=b, f2=g2=d, gag-1=ab=ba, ac=ca, ad=da, ae=ea, faf-1=abc, bc=cb, bd=db, fef-1=be=eb, bf=fb, bg=gb, cd=dc, geg-1=ce=ec, cf=fc, cg=gc, de=ed, gfg-1=df=fd, dg=gd >

Subgroups: 404 in 198 conjugacy classes, 92 normal (22 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, Q8, C23, C23, C23, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×Q8, C24, C2.C42, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C23×C4, C22×Q8, C23.7Q8, C23.34D4, C23⋊Q8, C23.78C23, C23.Q8, C23.81C23, C23.4Q8, C23.83C23, C23.741C24
Quotients: C1, C2, C22, Q8, C23, C2×Q8, C24, C22×Q8, 2+ 1+4, 2- 1+4, C232Q8, C23.41C23, C22.54C24, C22.56C24, C22.57C24, C23.741C24

Character table of C23.741C24

 class 12A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P
 size 11111111444444888888888888
ρ111111111111111111111111111    trivial
ρ211111111-1-1-1-111-111-1-11-11-111-1    linear of order 2
ρ311111111111111-1-111-1-1-1-1-1-111    linear of order 2
ρ411111111-1-1-1-1111-11-11-11-11-11-1    linear of order 2
ρ511111111-1-111-1-11-1-11-111-1-111-1    linear of order 2
ρ61111111111-1-1-1-1-1-1-1-111-1-11111    linear of order 2
ρ711111111-1-111-1-1-11-111-1-111-11-1    linear of order 2
ρ81111111111-1-1-1-111-1-1-1-111-1-111    linear of order 2
ρ91111111111111111-1-111-1-1-1-1-1-1    linear of order 2
ρ1011111111-1-1-1-111-11-11-111-11-1-11    linear of order 2
ρ1111111111111111-1-1-1-1-1-11111-1-1    linear of order 2
ρ1211111111-1-1-1-1111-1-111-1-11-11-11    linear of order 2
ρ1311111111-1-111-1-11-11-1-11-111-1-11    linear of order 2
ρ141111111111-1-1-1-1-1-1111111-1-1-1-1    linear of order 2
ρ1511111111-1-111-1-1-111-11-11-1-11-11    linear of order 2
ρ161111111111-1-1-1-11111-1-1-1-111-1-1    linear of order 2
ρ17222-2-2-22-2-222-2-22000000000000    symplectic lifted from Q8, Schur index 2
ρ18222-2-2-22-22-22-22-2000000000000    symplectic lifted from Q8, Schur index 2
ρ19222-2-2-22-2-22-222-2000000000000    symplectic lifted from Q8, Schur index 2
ρ20222-2-2-22-22-2-22-22000000000000    symplectic lifted from Q8, Schur index 2
ρ214-4444-4-4-4000000000000000000    orthogonal lifted from 2+ 1+4
ρ224-4-4-44-444000000000000000000    orthogonal lifted from 2+ 1+4
ρ2344-4-444-4-4000000000000000000    orthogonal lifted from 2+ 1+4
ρ2444-44-4-4-44000000000000000000    orthogonal lifted from 2+ 1+4
ρ254-4-44-444-4000000000000000000    symplectic lifted from 2- 1+4, Schur index 2
ρ264-44-4-44-44000000000000000000    symplectic lifted from 2- 1+4, Schur index 2

Smallest permutation representation of C23.741C24
On 64 points
Generators in S64
(5 18)(6 19)(7 20)(8 17)(13 15)(14 16)(21 34)(22 35)(23 36)(24 33)(25 27)(26 28)(29 31)(30 32)(37 56)(38 53)(39 54)(40 55)(45 47)(46 48)(49 63)(50 64)(51 61)(52 62)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 41)(2 42)(3 43)(4 44)(5 20)(6 17)(7 18)(8 19)(9 57)(10 58)(11 59)(12 60)(13 25)(14 26)(15 27)(16 28)(21 34)(22 35)(23 36)(24 33)(29 45)(30 46)(31 47)(32 48)(37 56)(38 53)(39 54)(40 55)(49 61)(50 62)(51 63)(52 64)
(1 11)(2 12)(3 9)(4 10)(5 50)(6 51)(7 52)(8 49)(13 31)(14 32)(15 29)(16 30)(17 63)(18 64)(19 61)(20 62)(21 40)(22 37)(23 38)(24 39)(25 47)(26 48)(27 45)(28 46)(33 54)(34 55)(35 56)(36 53)(41 59)(42 60)(43 57)(44 58)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 19 11 61)(2 18 12 64)(3 17 9 63)(4 20 10 62)(5 58 50 44)(6 57 51 43)(7 60 52 42)(8 59 49 41)(13 40 31 21)(14 39 32 24)(15 38 29 23)(16 37 30 22)(25 55 47 34)(26 54 48 33)(27 53 45 36)(28 56 46 35)
(1 47 11 25)(2 32 12 14)(3 45 9 27)(4 30 10 16)(5 56 50 35)(6 38 51 23)(7 54 52 33)(8 40 49 21)(13 41 31 59)(15 43 29 57)(17 53 63 36)(18 39 64 24)(19 55 61 34)(20 37 62 22)(26 42 48 60)(28 44 46 58)

G:=sub<Sym(64)| (5,18)(6,19)(7,20)(8,17)(13,15)(14,16)(21,34)(22,35)(23,36)(24,33)(25,27)(26,28)(29,31)(30,32)(37,56)(38,53)(39,54)(40,55)(45,47)(46,48)(49,63)(50,64)(51,61)(52,62), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,41)(2,42)(3,43)(4,44)(5,20)(6,17)(7,18)(8,19)(9,57)(10,58)(11,59)(12,60)(13,25)(14,26)(15,27)(16,28)(21,34)(22,35)(23,36)(24,33)(29,45)(30,46)(31,47)(32,48)(37,56)(38,53)(39,54)(40,55)(49,61)(50,62)(51,63)(52,64), (1,11)(2,12)(3,9)(4,10)(5,50)(6,51)(7,52)(8,49)(13,31)(14,32)(15,29)(16,30)(17,63)(18,64)(19,61)(20,62)(21,40)(22,37)(23,38)(24,39)(25,47)(26,48)(27,45)(28,46)(33,54)(34,55)(35,56)(36,53)(41,59)(42,60)(43,57)(44,58), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,19,11,61)(2,18,12,64)(3,17,9,63)(4,20,10,62)(5,58,50,44)(6,57,51,43)(7,60,52,42)(8,59,49,41)(13,40,31,21)(14,39,32,24)(15,38,29,23)(16,37,30,22)(25,55,47,34)(26,54,48,33)(27,53,45,36)(28,56,46,35), (1,47,11,25)(2,32,12,14)(3,45,9,27)(4,30,10,16)(5,56,50,35)(6,38,51,23)(7,54,52,33)(8,40,49,21)(13,41,31,59)(15,43,29,57)(17,53,63,36)(18,39,64,24)(19,55,61,34)(20,37,62,22)(26,42,48,60)(28,44,46,58)>;

G:=Group( (5,18)(6,19)(7,20)(8,17)(13,15)(14,16)(21,34)(22,35)(23,36)(24,33)(25,27)(26,28)(29,31)(30,32)(37,56)(38,53)(39,54)(40,55)(45,47)(46,48)(49,63)(50,64)(51,61)(52,62), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,41)(2,42)(3,43)(4,44)(5,20)(6,17)(7,18)(8,19)(9,57)(10,58)(11,59)(12,60)(13,25)(14,26)(15,27)(16,28)(21,34)(22,35)(23,36)(24,33)(29,45)(30,46)(31,47)(32,48)(37,56)(38,53)(39,54)(40,55)(49,61)(50,62)(51,63)(52,64), (1,11)(2,12)(3,9)(4,10)(5,50)(6,51)(7,52)(8,49)(13,31)(14,32)(15,29)(16,30)(17,63)(18,64)(19,61)(20,62)(21,40)(22,37)(23,38)(24,39)(25,47)(26,48)(27,45)(28,46)(33,54)(34,55)(35,56)(36,53)(41,59)(42,60)(43,57)(44,58), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,19,11,61)(2,18,12,64)(3,17,9,63)(4,20,10,62)(5,58,50,44)(6,57,51,43)(7,60,52,42)(8,59,49,41)(13,40,31,21)(14,39,32,24)(15,38,29,23)(16,37,30,22)(25,55,47,34)(26,54,48,33)(27,53,45,36)(28,56,46,35), (1,47,11,25)(2,32,12,14)(3,45,9,27)(4,30,10,16)(5,56,50,35)(6,38,51,23)(7,54,52,33)(8,40,49,21)(13,41,31,59)(15,43,29,57)(17,53,63,36)(18,39,64,24)(19,55,61,34)(20,37,62,22)(26,42,48,60)(28,44,46,58) );

G=PermutationGroup([[(5,18),(6,19),(7,20),(8,17),(13,15),(14,16),(21,34),(22,35),(23,36),(24,33),(25,27),(26,28),(29,31),(30,32),(37,56),(38,53),(39,54),(40,55),(45,47),(46,48),(49,63),(50,64),(51,61),(52,62)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,41),(2,42),(3,43),(4,44),(5,20),(6,17),(7,18),(8,19),(9,57),(10,58),(11,59),(12,60),(13,25),(14,26),(15,27),(16,28),(21,34),(22,35),(23,36),(24,33),(29,45),(30,46),(31,47),(32,48),(37,56),(38,53),(39,54),(40,55),(49,61),(50,62),(51,63),(52,64)], [(1,11),(2,12),(3,9),(4,10),(5,50),(6,51),(7,52),(8,49),(13,31),(14,32),(15,29),(16,30),(17,63),(18,64),(19,61),(20,62),(21,40),(22,37),(23,38),(24,39),(25,47),(26,48),(27,45),(28,46),(33,54),(34,55),(35,56),(36,53),(41,59),(42,60),(43,57),(44,58)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,19,11,61),(2,18,12,64),(3,17,9,63),(4,20,10,62),(5,58,50,44),(6,57,51,43),(7,60,52,42),(8,59,49,41),(13,40,31,21),(14,39,32,24),(15,38,29,23),(16,37,30,22),(25,55,47,34),(26,54,48,33),(27,53,45,36),(28,56,46,35)], [(1,47,11,25),(2,32,12,14),(3,45,9,27),(4,30,10,16),(5,56,50,35),(6,38,51,23),(7,54,52,33),(8,40,49,21),(13,41,31,59),(15,43,29,57),(17,53,63,36),(18,39,64,24),(19,55,61,34),(20,37,62,22),(26,42,48,60),(28,44,46,58)]])

Matrix representation of C23.741C24 in GL10(𝔽5)

4000000000
0400000000
0010000000
0001000000
0030400000
0002040000
0000001000
0000000400
0000000010
0000000004
,
1000000000
0100000000
0010000000
0001000000
0000100000
0000010000
0000004000
0000000400
0000000040
0000000004
,
1000000000
0100000000
0040000000
0004000000
0000400000
0000040000
0000004000
0000000400
0000000040
0000000004
,
4000000000
0400000000
0010000000
0001000000
0000100000
0000010000
0000004000
0000000400
0000000040
0000000004
,
1000000000
0100000000
0010000000
0004000000
0000100000
0000040000
0000000030
0000000003
0000003000
0000000300
,
3000000000
0200000000
0020200000
0003020000
0010300000
0001020000
0000000010
0000000001
0000004000
0000000400
,
0400000000
1000000000
0001000000
0010000000
0003010000
0020100000
0000000100
0000004000
0000000004
0000000010

G:=sub<GL(10,GF(5))| [4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,3,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,3,0,0],[3,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,3,0,1,0,0,0,0,0,0,2,0,3,0,0,0,0,0,0,0,0,2,0,2,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,1,0,3,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0] >;

C23.741C24 in GAP, Magma, Sage, TeX

C_2^3._{741}C_2^4
% in TeX

G:=Group("C2^3.741C2^4");
// GroupNames label

G:=SmallGroup(128,1573);
// by ID

G=gap.SmallGroup(128,1573);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,112,253,456,758,723,352,794,185]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=b,f^2=g^2=d,g*a*g^-1=a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,f*a*f^-1=a*b*c,b*c=c*b,b*d=d*b,f*e*f^-1=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,g*e*g^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,g*f*g^-1=d*f=f*d,d*g=g*d>;
// generators/relations

Export

Character table of C23.741C24 in TeX

׿
×
𝔽